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Figure 1.We present HandySense, a multimodal collection system integrating visual, tactile, motion, and spatial perception
to achieve accurate and robust tracking of two-handed manipulation. HandySense comprises two RGB-D cameras, two
visual-inertial tracking cameras, and a motion capture (mocap) glove equipped with fingertip tactile sensors.

ABSTRACT
Humanoid robots with dexterous hands have gained signifi-
cant attention due to their manipulation capabilities. Recent
advancements are driven by large-scale real robot data and
teleoperation technology, enabling precise operation demon-
strations and smooth trajectories. Common methods like
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virtual reality devices, cameras, wearable gloves, and cus-
tom hardware face the inability to capture real information
about human-object contact, such as tactile information. In
this study, we present HandySense, a multimodal system
integrating visual, tactile, motion, and spatial perception for
robust and comprehensive two-handed manipulation track-
ing. HandySense includes RGB-D cameras, visual-inertial
tracking cameras, and a motion capture glove with fingertip
tactile sensors. Our framework achieved 99.45% accuracy in
classifying 12 task stages, exhibiting the potential for large-
scale human demonstration data collection and representing
a pivotal step towards empowering humanoid robots to exe-
cute complex manipulations.

CCS Concepts: •Computer systems organization→ Em-
bedded hardware.
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1 INTRODUCTION
The dexterous use of hands, particularly fingers, distinguishes
humans, and humanoid robots with similar dexterity have
garnered significant attention [1]. Recent advancements in
robot manipulation stem from the aggregation of large-scale
real-world data [2]. Teleoperation has been crucial in gather-
ing imitation learning data, enabling precise demonstrations
and natural trajectory formation, which improves the gener-
alization of learned strategies to new tasks and environments
[3, 4].

Large-scale data collection is vital for robot learning. Com-
mon methods include teleoperating robots with VR devices
[5], RGB cameras [6], wearable sensors [7], and custom hard-
ware [8]. However, thesemethods are costly and yield limited
data due to slow robot movements and susceptibility to dam-
age. Alternatively, direct human movement tracking without
robot control has been explored, using vision-based track-
ing [9], IMU-based tracking [10], and soft wearable tracking
[11]. Other approaches, such as magnetic trackers, suffer
from electromagnetic interference [12], and exoskeletons
are bulky and restrict hand dexterity.
Current systems lack the ability to capture contact in-

formation during human-object interactions, which limits
tactile information comparable to human flexibility. Humans
use tactile perception to gather details like texture, spatial
features, and material properties, aiding in task classification
and dexterous operations [13–15]. Providing robots with
similar tactile understanding could enhance their efficiency.

This study proposes a multimodal system that integrates
visual, tactile, motion, and spatial perception for robust track-
ing of two-handed manipulation (Fig. 1). Our system incorpo-
rates RGB-D cameras, tracking cameras, and mocap gloves
with tactile sensors. A multimodal fusion framework was
developed, achieving 99.45% accuracy in identifying task
stages. This multimodal data, including tactile information,
represents a step toward advancing robotic manipulation
capabilities.

2 RELATEDWORKS
2.1 Multimodal Motion Capture System
Human hand motion capture (mocap) is vital for com-

puter vision and graphics applications. This technique often

uses cameras (such as RGB, RGB-D, or stereo) to track hand
movements without markers, employing machine learning
models trained on large datasets [16–19]. Despite advance-
ments, challenges like occlusion and reliance on the training
set remain, particularly with varying hands, objects, and
lighting conditions outside the training data [20, 21].
Recently, inertial measurement units (IMUs) have been

used for human mocap in real-world environments [22–24].
These systems typically involve six-axis IMUs (accelerome-
ters and gyroscopes) and magnetometers attached to each
finger bone to measure 3-DoF orientation, reconstructing
hand movements by gathering angle data and using addi-
tional sensors for hand position. However, IMUs are affected
by magnetic field variations, making them unreliable near
ferromagnetic materials or electronic devices.
The soft wearable tracking approach uses soft sensors

that produce signals based on deformation, wrapping around
the hand to estimate hand configurations with the help of
extra posture sensors [25, 26]. Additionally, tactile sensors
made from flexible electronic materials can be lightweight
and easily deployed on the hand, providing contact pressure
information during manipulation, which is crucial for future
precise robotic operations.
2.2 Tactile Sensor
In humanoid robots, tactile sensors are crucial for end

effectors, particularly dexterous hands, to achieve tactile per-
ception, enabling accurate object information acquisition
and precise grasping. The development of tactile sensors
focuses on improving sensitivity (multidimensional force
sensing), integration (more array units per unit area), ex-
tensibility (durable, high-resolution flexible materials), and
cost-effectiveness. Electronic skins using piezoresistive [27],
capacitive [28, 29], optical waveguide [30, 31], and other
mechanisms [32, 33] convert external stimuli into electrical
signals, supporting advanced tactile perception.
Visual tactile sensors, such as Gelsight [34] and other

vision-based sensors [35, 36], use cameras to capture surface
deformations on contact. They integrate cameras and LEDs
within transparent silicone with reflective coatings to detect
3D shapes and textures via internal reflections. These sen-
sors, paired with computational methods, have been used to
predict geometry, slip [37], and object properties [38]. De-
spite their high resolution, their bulky design limits their
applicability to smaller, less complex surfaces. While suitable
for robotic grippers, they are not ideal for wearable sensors
or capturing human demonstrations.

Piezoresistive tactile sensors use pressure-sensitive mate-
rials that change resistance under pressure, converting stim-
uli into electrical signals through row-column scanning cir-
cuits and high-precision analog-to-digital converters (ADCs).
These sensors can be manufactured on flexible thin films
using techniques like laser direct writing, 3D printing, or
screen printing. Due to their lightweight, thin profile, they
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can be scaled to large areas, adapted to complex surfaces, or
combined with fabric to create wearable sensors.
In this study, we employ piezoresistive tactile arrays on

the fingertips of a Manus mocap glove (Prime II) to capture
tactile data and grasp gestures simultaneously during various
tasks.

Figure 2. Detailed presentation of the multimodal mocap
glove. (a) Distribution of flexible tactile sensors at the finger-
tips and structural diagram of the tactile sensors. (b) Struc-
ture showing the three-dimensional spatial pose estimation
based on the wrist and the tactile information acquisition
board.

3 SYSTEM DESIGN
In this section, we introduce the system design, including (1)
Multimodal Glove and (2) System Working Mechanism. To
capture multimodal data of human handmanipulation in real
time, the system consists of a Manus mocap glove to track
gestures whenmanipulating objects, and a 4×5 piezoresistive
array sensor deployed on each fingertips to record contact
and force distribution information. A Realsense tracking
camera T265 mounted on the top of each glove is used to
track the 6-DoF posture of the wrist using SLAM, and a
Realsense RGB-D camera D415 located on the chest and
head to observe the 3D environment.

3.1 Multimodal Glove
To robustly capture multimodal data of daily activities

and track finger movements in real-world settings, our sys-
tem uses soft bend sensor gloves. These gloves offer sig-
nificant advantages over vision- and IMU-based tracking
systems, particularly in handling visual occlusions and oper-
ating around magnetic objects. Our system utilizes Manus
Prime II mocap gloves (see Fig. 2(a)), with each fingertip em-
bedded with a flexible tactile sensor array, providing a total
of 100 tactile monitoring points per glove. The tactile array
consists of a layered structure: a polyester (PET) protective
layer, a patterned piezoresistive layer, an interpolation elec-
trode layer, and an adhesive layer that secures the sensors
to the glove fabric.

To ensure user comfort during dual-hand tasks, the leads
of the tactile arrays are routed from the back of the glove,
with fingertip tactile acquisition cards placed on the back of
the hand, transmitting tactile data wirelessly to the host com-
puter. Data from the Manus mocap gloves is also transmitted
wirelessly. For precise wrist 6-DoF pose tracking, we use a
Realsense T265 camera (see Fig. 2(b)). This camera employs
an embedded chip to run SLAM in real-time, integrating
images from two fisheye cameras and IMU data to map the
environment and track the wrist’s 6-DoF pose consistently.
The pose information is output in real-time via a wired USB
3.0 connection. Our system combines wired and wireless
data transmission to balance convenience and accuracy. We
also designed 3D-printed components to quickly attach the
T265 camera to the Manus gloves, enhancing installation
speed and ease.
3.2 SystemWorking Mechanism

The system includes a multimodal glove, head- and chest-
mounted cameras, and a back-mounted power supply and
controller (Fig. 3). It can be expanded with additional sensors
to capture more data. The glove has a 4×5 tactile sensor array
on each fingertip, transmitting data wirelessly at 30 Hz via
Bluetooth. Gesture signals are sent via the Manus glove’s
dedicated channel at 60 Hz with 15 data points per glove.
The head- and chest-mounted RGB-D cameras transmit

640×480 resolution data at 30 Hz via wired connections, with
cables routed to maintain operator mobility. Wrist-mounted
T265 tracking cameras also use wired transmission, connect-
ing to the back-mounted control unit.
Overall, the system uses a hybrid of wired and wireless

data transmission. The terminal employs a multithreaded
data acquisition framework, such as Redis, to synchronize
the multimodal data, eliminating the need for complex post-
processing. The system simultaneously collects RGB-D im-
ages, tactile data, gesture data, and wrist pose information
which are segmented into data chunks based on key po-
sitions after completing certain tasks. This segmentation
improves data utilization by breaking long sequences into
shorter tasks.
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Figure 3. Multimodal acquisition system and collected dataset samples for human two-handed manipulation.

In summary, this modular system is highly expandable
and convenient, allowing for the integration of additional
sensory or modal information. We believe this multimodal
data acquisition platform will provide a foundational sup-
port for subsequent two-handed manipulation tasks and the
transition to humanoid robot operations.

Figure 4. Photographs and tactile data during typical object
grasping.

4 EXPERIMENTS AND RESULTS
4.1 Fingertip Tactile Visualization
To further demonstrate the data presentation of the mul-

timodal glove during object interactions, particularly the
grasping posture and fingertip tactile data, we tested three
typical tasks: grasping a cup, pinching an egg, and twisting
a bottle cap. It showcases the visualization of hand grasping
postures and the pressure distribution of the tactile arrays
on the five fingertips. As illustrated in Fig. 4, it is clear that
the hand postures vary when grasping different objects, and
the pressure distribution on the fingertips also differs. For ex-
ample, during the bottle cap twisting task, the operation can
mostly be completed using the thumb and index finger, re-
sulting in almost zero pressure distribution on the remaining
three fingers (middle, ring, and pinky fingers).

Through these three different tasks, we demonstrate how
the multimodal glove captures grasping postures and contact
pressure distribution during object interactions.

4.2 Task Types Classification
To implement the task type classification experiment, we

selected 12 common daily activities (Fig. 5(a)): I. pouring
water, II. unplugging a socket, III. using a game controller,
IV. pumping, V. wiping a table, VI. unscrewing a bottle cap,
VII. clipping, VIII. placing items, IX. tapping a keyboard, X.
cutting wires, XI. applying a glue gun, XII. tapping. The
HandySense system was used to collect multimodal data for
these actions.
To improve data collection efficiency and reliability, we

developed dedicated scripts that ran continuously during the
acquisition process, marking the start and end of each action
with keyboard input flags. Valid action periods were tagged
as ’1’ and saved in .txt format, allowing for easy segmentation
during data cleaning.

Our system enabled high-frame-rate data collection for de-
tailed resolution of complex tasks. To manage the high data
dimensionality, we used uniform sampling to reduce each
action sample to 10 data frames, maintaining comprehensive
coverage of the action. We increased the sample quantity by
varying sampling times, resulting in a dataset with 5040 sam-
ples (about 420 per activity). This augmentation enhances
model generalization during training.
4.3 Results

We employed a Transformer model to utilize the rich mul-
timodal data and continuity of each data type (Fig. 5(b)). The
model was trained to classify 12 activities using the processed
dataset. Figure 1 shows the Transformer model’s structure,
including multimodal input embedding, linear projection,
self-attention, cross-attention, Transformer encoder, multi-
head attention, feed-forward network, layer normalization,
and learnable position embedding. The self-attention mecha-
nism handles single-modality data, while the cross-attention
mechanism processes interactions between different modali-
ties.

We visualized the classification results using a confusion
matrix (Fig. 5(c)), where the axis labels represent the true and
predicted labels of the 12 activities. The results show that the
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Figure 5. (a) Pictures of twelve action tasks (third perspective). (b) Designed multimodal fusion network architecture. (c)
Schematic diagram of the confusion matrix for the classification.

Transformer model effectively leveraged multimodal infor-
mation, achieving an overall accuracy of 99.45% in task stage
classification, demonstrating its robustness in recognizing
different activities.

5 DISCUSSION AND FUTUREWORK
We present HandySense, a multimodal data collection system
for precise tracking of two-handed operations, integrating
visual, tactile, motion, and spatial perception. HandySense
includes two RGB-D cameras, two visual-inertial cameras,
and a multimodal mocap glove equipped with tactile sen-
sors on each fingertip, providing 200 sensing units across
both hands at 30Hz. This system excels in capturing tactile
pressure during object manipulation, a feature uncommon
in current mocap systems. Using HandySense, we collected
data on daily activities and developed a Transformer-based
model that accurately classifies 12 common tasks by leverag-
ing multimodal data.
Future work will focus on expanding sensor modalities,

improving system portability and stability, and applying
imitation learning to transfer human dexterity to robots for
complex tasks in unstructured environments.
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